Kershner-2020
Authors: Kershner, John R..
Article: Dyslexia as an adaptation to cortico-limbic stress system reactivity.
Publication: Neurobiology of Stress (Elsevier). 100223 2020 | DOI: 10.1016/j.ynstr.2020.100223
Highlights
- • Reading requires stress system homeostasis at the cellular, region, and network levels.
- • Dyslexia may be a positive evolutionary adaptation to challenges to stress homeostasis.
- • Dyslexia may be caused by a tradeoff between epigenetic, stress and growth gene programs.
- • Stress in dyslexia involves the HPA axis, LC/NE system, and neural network interactions.
Abstract
A new school of thought in evolutionary developmental biology, combined with research in the neurobiology of stress, suggest that early exposure to stressful circumstances may be a cause of dyslexia. A balance between epigenetic, stress-induced and cognitive-growth genetic programs modulates the brain’s cellular, regional, and network homeostasis. This balance is essential for adaptability to the normative range of everyday stress. However, even mild chronic stress exposition may overactivate the hypothalmic-pituitary-adrenal stress axis, upsetting the homeostatic balance between these programs, and exposing the brain to harmful levels of stress hormones. A protective strategy to sustained disequilibrium precociously advances maturation at the cost of neuroplasticity, which blunts stress axis reactivity but also compromises learning potential in the prefrontal cortex and networks associated with dyslexia. Stress exceeding an individual’s range of resilience: (1) reduces levels of TFEB and BDNF, gene regulatory factors prolonging maturation and neuroplasticity; (2) interferes with the insular cortex, amygdala and hippocampus in coordinating afferent visceral signals with cognitive performance; (3) over-recruits the brain’s Default Mode network; and (4) amplifies release from the Locus coeruleus/norepinephrine system which impairs the entrainment of oscillations in the lower phonological frequencies of speech. Evidence supporting a stress-growth imbalance is preliminary, but holds promise for reconceptualizing the neurobiology of dyslexia and reducing its prevalence.
John R. Kershner, Dyslexia as an adaptation to cortico-limbic stress system reactivity, Neurobiology of Stress, 2020,
100223,
ISSN 2352-2895,
https://doi.org/10.1016/j.ynstr.2020.100223.