Perera – 2017

Authors: Biyagama Arachchige Harshani Perera.

Article: Identification of EEG Signal Patterns Between Adults With Dyslexia and Normal Controls.

Publication: Murdoch University. PhD Thesis 2017

[Full Text]

In this thesis, we are particularly interested in discussing the use of EEG to explore unique brain activities of adults with dyslexia. We attempt to discover unique EEG signal patterns between adults with dyslexia compared to normal controls while performing tasks that are more challenging for individuals with dyslexia. These tasks include real-word reading, nonsenseword reading, passage reading, Rapid Automatized Naming (RAN), writing, typing, browsing the web, table interpretation and typing of random numbers. Each participant was instructed to perform these specific tasks while staying seated in front of a computer screen with the EEG headset setup on his or her head. The EEG signals captured during these tasks were examined using a machine learning classification framework, which includes signal preprocessing, frequency sub-band decomposition, feature extraction, classification and verification. Cubic Support Vector Machine (CSVM) classifiers were developed for separate brain regions of each specified task in order to determine the optimal brain regions and EEG sensors that produce the most unique EEG signal patterns between the two groups.